Files
PolyCubeCounting/julia/PolyCube.jl

59 lines
2.1 KiB
Julia

include("tuple_tools.jl")
import Combinatorics: powerset
import XXhash: xxh3_64
# since differences fully represent the structure, everything may be faster if we just dump the explicit
# location data and work only on the differences
struct PolyCube
cubes::Vector{Coord}
oriented_differences::Vector{Vector{Coord}}
last_added::Vector{Coord}
end
function PolyCube(cubes::Vector{Coord}, last_added::Vector{Coord})
return PolyCube(sort!(cubes), _calculate_oriented_differences(cubes), last_added)
end
# possible improvement: since reorientation[1] == cubes, skip the insertion sterp, and benefit from having cubes sorted.
# then skip sorting in constructor
function _calculate_oriented_differences(cubes::Vector{Coord})
n_orientations = 24
n_cubes = length(cubes)
reorientation = Vector{Coord}(undef, n_cubes)
oriented_differences = Vector{Vector{Coord}}(undef, n_orientations)
for i 1:n_orientations
for j 1:n_cubes
reorientation[j] = orient_tuple(cubes[j], i)
end
sort!(reorientation)
reference_cube = reorientation[1]
oriented_differences[i] = Vector{Coord}(undef, n_cubes-1)
for j 1:n_cubes-1
oriented_differences[j] = reference_cube - reorientation[j+1]
end
end
return oriented_differences
end
function generate_children(pcube::PolyCube, n_max::Int)
cubes = pcube.cubes
allowed_growth = n_max - length(cubes)
growth_candidates = Vector{Coord}(undef, 0)
for root_cube pcube.last_added
for neighbor neighbors(root_cube...)
pos_growth_candidates = searchsortedfirst(growth_candidates, neighbor)
# consider flipping following ||, it MAY imrove performance
if growth_candidates[pos_growth_candidates] != neighbor || !isempty(searchsorted(cubes, neighbor))
insert!(growth_candidates, pos_growth_candidates, neighbor)
end
end
end
return Iterators.map(x -> PolyCube(vcat(cubes, x), x), powerset(growth_candidates, 1, allowed_growth))
end
function hash!(pcube::PolyCube, UInt::h) -> UInt
return xxh3_64(pcube.oriented_differences[1])
end