include("Polycube.jl") include("ImmutableOrientedPolycube.jl") include("TupleMisc.jl") include("plot.jl") using XXhash using Serialization using ArgParse using Combinatorics function main() s = ArgParseSettings() @add_arg_table s begin "-g" help = "generator" arg_type = Int "-c" help = "Polycube count" action = :store_true "-l" help = "Polycube list" action = :store_true "-p" help = "plot n_cubes i_Polycube" nargs = '+' arg_type = Int end parsed_args = parse_args(s) generate = get(parsed_args, "g", nothing) if generate !== nothing && generate > 0 scanForPolycubes(generate) end if get(parsed_args, "c", false) countPolycubes() end if get(parsed_args, "l", false) listPolycubes() end plot = get(parsed_args, "p", nothing) if length(plot) == 1 plotPolycubes(plot) elseif length(plot) == 2 plotPolycube(plot) end end function options() println("scanForPolycubes(Int::n): scans for Polycubes of size <=n") println("countPolycubes(): opens Polycube storage and displays the amount of Polycubes for the generated sizes") println("listPolycubes(): lists all Polycubes from the Polycube storage") println("plot(Vector{Int}::v): plots Polycubes of size v[1], or just v[2] from the list") end function scanForPolycubes(MaxSize::Int64) D = Dict{UInt, ImmutableOrientedPolycube}() S = Vector{Polycube}(); cube = getCube() immutableCube = getImmutableOrientedPolycube(cube) D[immutableCube.hash] = immutableCube push!(S, cube) while !isempty(S) cube = pop!(S) growableSpaces = collect(getPossibleNeighbors(cube)) acceptable_growth = MaxSize - length(cube.cubes) possibleGrowth = powerset(growableSpaces, 1, acceptable_growth) for cubesToAdd ∈ possibleGrowth newPolycube = deepcopy(cube) for c ∈ cubesToAdd push!(newPolycube, c) end collision = checkForCollision(newPolycube, D) if !collision push!(S, newPolycube) immutableNewPolycube = getImmutableOrientedPolycube(newPolycube) D[immutableNewPolycube.hash] = immutableNewPolycube end end end sanitizedData = sanitize(D, MaxSize) serialize("julia/results.bin", sanitizedData) end function scanForPolycubesRec(MaxSize::Int64) D = Dict{UInt, ImmutableOrientedPolycube}() singletonCube = getCube() immutableCube = getImmutableOrientedPolycube(singletonCube) D[immutableCube.hash] = immutableCube evaluatePolycube(singletonCube, D, MaxSize) end function evaluatePolycube(polycube::Polycube, D::Dict{UInt, ImmutableOrientedPolycube}, MaxSize::Int64) growableSpaces = collect(getPossibleNeighbors(polycube)) acceptable_growth = MaxSize - length(polycube.cubes) possibleGrowth = powerset(growableSpaces, 1, acceptable_growth) for cubesToAdd ∈ possibleGrowth newPolycube = deepcopy(polycube) for c ∈ cubesToAdd push!(newPolycube, c) end collision = checkForCollision(newPolycube, D) if !collision immutableNewPolycube = getImmutableOrientedPolycube(newPolycube) D[immutableNewPolycube.hash] = immutableNewPolycube evaluatePolycube(newPolycube, D, MaxSize) end end end function countPolycubes() T = deserialize("julia/results.bin") n = T[1] for i ∈ 1:n print("n = ") print(i) print(": ") println(length(T[2][i])) end end function listPolycubes() T = deserialize("julia/results.bin") print("max size: ") println(T[1]) for V ∈ T[2] for v ∈ V println(v) end end end function checkForCollision(S::Polycube, D::Dict{UInt, ImmutableOrientedPolycube}) for i ∈ 1:24 hash = hashList(S.orderedLists[i]) value = get(D, hash, nothing) if value !== nothing && hash == value.hash return true end end return false end function hashList(L::Vector{Tuple{Int64, Int64, Int64}}) diffList = Vector{Tuple{Int64, Int64, Int64}}(undef, length(L)-1) for i ∈ eachindex(diffList) diffList[i] = L[i+1] - L[i] end return xxh3_64(diffList) end function sanitize(D::Dict{UInt, ImmutableOrientedPolycube}, size::Int64) data = Vector{Vector{Vector{Tuple{Int64, Int64, Int64}}}}(undef, size) for i ∈ eachindex(data) data[i] = Vector{Vector{Tuple{Int64, Int64, Int64}}}(undef, 0) end for (K, V) ∈ D push!(data[length(V.cubes)], V.cubes) end return (size, data) end main()